Company name: ispace, inc.

Name of representative: Takeshi Hakamada, Representative Director and

CEO

Securities code: 9348; Growth Market

Inquiries: Jumpei Nozaki, Director and CFO

(Telephone: +81-03-6277-6451)

Notice regarding Completion of "Success 5" for Mission 2

ispace inc. ("ispace") hereby announces that it has completed Success 5 (Completion of Lunar Flyby*1) for Mission 2 "SMBC x HAKUTO-R VENTURE MOON" ("Mission 2") as below.

1. Progress of Mission 2 (as of February 17, 2025)

As announced on January 17, 2025, ispace had completed Success 4 (Completion of first Orbital Control Maneuver*2). In the morning of February 15, 2025 (Japan Standard Time), the RESILIENCE Lander performed a lunar flyby*1, approaching and passing the Moon at a distance of approximately 8,400km, thus completing Mission2 milestone Success 5, the first lunar flyby by a commercial lunar lander developed by a private company. The lunar flyby is an important milestone for ispace's goal of transitioning to deep space navigation using low-energy transfer orbit, which requires precise orbit planning and operations to accurately guide the lander through several tens of km as a target. Thanks to our experience and achievements in orbit control acquired during Mission 1, our first attempt at a lunar flyby was a success.

*1 Flyby: Flyby is a term used to describe spaceflight in which a spacecraft passes close to a celestial body. It is a type of navigation that uses the gravity of a passing celestial body to change its orbit to explore that celestial body or to reach another destination

*2 Orbital maneuver: the process of changing the attitude, position, or orbit etc. of a spacecraft by controlling actuators (devices that convert energy into motion) of a system such as propulsions

2. Impact on financial results

There is no impact of this announcement on our consolidated financial results.

3. (Reference) Mission 2 Milestones

Milestone		Expected completion date	Success Criteria
Success 1 (Complete)	Completion of Launch Preparations	Launch - 2-3 days	 Complete all development processes of the RESILIENCE lunar lander before flight operations Contract and prepare launch vehicle, and complete integration of lunar lander into the launch vehicle Prove ability to flexibly manufacture and assemble landers in various geographic locations of the world
Success 2 (Complete)	Completion of Launch and Deployment	Launch + 1 hour	 Complete successful separation of the lunar lander from the launch vehicle Reaffirm that ispace's lander design and structure is capable of withstanding the harsh conditions during launch on its second mission, offering valuable information towards future development and missions
Success 3 (Complete)	Establishment of Steady Operation State	Launch + several hours	Establish communication link between the lander and Mission Control Center, confirm a stable attitude as well as start stable generation of electrical power in orbit
Success 4 (Complete)	Completion of first Orbital Control Maneuver (Note 1)	Launch + 1-2 days	Complete the first orbit control maneuver, setting the lander on a course towards the Moon
Success 5 (Complete)	Completion of Lunar Flyby (Note 2)	Launch + 1 month	 Complete a lunar flyby approximately one month after launch Begin Deep Space Flight operations

Success 6	Completion of all Deep-Space Orbital Control Maneuvers before LOI (Note 3)	Launch + 3-3.5 months	 Complete all planned deep space orbit control maneuvers by utilizing gravity assist effects and successfully target the first lunar orbit insertion maneuver Reaffirm the deep-space survivability of ispace's lander designs, as well as the viability of ispace's lunar planning
Success 7	Enter Lunar Orbit	Launch + 4 months	 Complete the first lunar orbit insertion maneuver and confirm the lander is in a lunar orbit Reaffirm the ability of ispace to deliver spacecraft and payloads into stable lunar orbits
Success 8	Completion of all Orbital Control Maneuvers in lunar orbit	Launch + 4.5 months	 Complete all planned lunar orbital control maneuvers before the landing sequence Confirm the lander is ready to start the landing sequence
Success 9	Completion of Lunar Landing Sequence	Launch + 4.5 months	Complete the landing sequence, verifying key landing abilities for future missions
Success 10	Establish Steady System State after Landing	Launch + 4.5 months	Establish a steady telecommunication and power supply for the lander on the lunar surface after landing

(Note 1) Flyby: Flyby is a term used to describe spaceflight in which a spacecraft passes close to a celestial body. It is a type of navigation that uses the gravity of a passing celestial body to change its orbit to explore that celestial body or to reach another destination

(Note 2) Orbital maneuver: the process of changing the attitude, position, or orbit etc. of a spacecraft by controlling actuators (devices that convert energy into motion) of a system such as propulsions (Note 3) LOI: Lunar Orbital Insertion

Mission 2

Mission Description

- The RESILIENCE lander, with hardware validated through Mission 1, will be utilized aiming to improve mission maturity and complete validation of lunar landing technology
- TENACIOUS micro rover developed by European entity will be validated for the first time, contributing to future lunar surface
- Transaction of lunar regolith will be executed between NASA and

Payload Customers

Total Contract Amount:

Approx.

Takasago Thermal Engineering

Lander etc. to be used

RESILIENCE Lander

Approx. 2.3m tall by 2.6m wide (legs deployed)

Mass

Approx. 1,000kg (Wet: fully fueled) Approx. 340kg (Dry: unfueled) **Design Payload Capacity**

Up to 30kg

Lightweight to withstand vibrations during transit to the lunar surface

Mass

Approx. 5kg

Design Payload Capacity Up to 1kg

